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1. Introduction

Complex ABCD ray matrix techniques combined with the paraxial approximation
of the Huygens-Fresnel formulation of wave optics lq a useful tool In
anelyzing analyticslly the mrfomm« of a rather general class of optical
lystemsm. This method expresses the complex optical field in the
observation (or output) plane as an integral over an initial (or input)
plane of the given source distribution multiplied by a propagation kernel,
which is a function of the ABCD matrix elements of the complete optical
system between the input anc!' output plane and properties of: the intervening
medium which the light propagates through. Thus, for example, the effects of
a random medium (e.g., turbulence) and incoherent sources can be described

by using this technique (2,3)

. By employing such methods one is able {n a
straight forward manner to obtain expressions for all the statistical
correlation functions that pertain to the optical system, source

distribution and intervening media under consideration.

The use of complex ABCD matrix elements permits modelling of limiting
apertures (e.g., thin lens, field stops, and finite sized measurement
apertures) as soft (i.e., Gaussian) apertures. In many applications (e.g.,
imaging and Fourier transform systems) such modelling yields useful
engineering analytical approximations to system performance that can be used
for designing, sizing and scaling of optical systems. In addition, the
results can generally be cast in a physically intuitive form, where, for
example, the effects of geometric optics and diffraction are readily

apparent.




In this paper we consider homogeneous media and derive in sec. 2 expressions
for the mean, variance and corresponding correlation function of the
irradiance distribution resulting from an incoherent source that has
propagated through a complex (axially symmetric) ABCD optical system. In
particular, we obtain a general expression for the mutual coherence function
which can be regarded as a generalization of the van Cittert-Zernike theorem
to complex paraxial ABCD systems. We also derive an expression that relates
the number of speckle correlation cells contained within a measurement area
to the parameters of the ABCD system. In particular, an expression for the
maximum number of indépendeqt lntgnsl.ty mguuremenu that the optical system

allows is obtained.

In sec. 3 we consider the effects of wave front decorrelation on fringe
formation In speckle interferometric systems. Such interferometers brings
about a real-time technique for non-destructive measurements of deformations
and contours of objects that scatter laser light diffussively, To make
measurements using double exposure speckle interferometry, a speckle-pattern
exposure of the object is taken in on: position. The object is then deformed
(l.e.,, put under Joad) and another exposure {s taken, These two speckle
patterns are subtracted, and their difference is squared to obtain speckle
correlation fringes that <correspond to the objects movement and

def‘armattonm .

Here we examins the eoffects of load induced object tilt
around an in-plane axis, in-plane and out of plane object displacement on

decorrelation of the interferograms operating {n the subtraction mode.

Decorrelation and the corresponding fringe visiblllty in Image-plaie

electronic speckle-pattern correlation Interferometers has been considered

recently by Oumer-Petersen(S)

. However, it can be shown (see Appendix) that




the correlation function derived in Ref.- 5 is valid only for the case where
the number of independent speckle modes N is much larger that unity (i.e., N
+ ®). Here we derive expression for the correlation function for both an
arbitrary ABCD system and finite N. In particular it is shown that as N » 1,
the correlation coefficient is equal to unity. That is, in this limit the

performance of phase difference speckle interferometers do not degrade under

load induced object deformations.
2. Intensity Statistics for Incoherent Sources

We consider a completely incoherent, finite sized, quasi~-monochromatic,
polarized optical source located in an input plane and assume that @
paraxial optical system, characterized by a complex ABCD ray matrix,
occupies the space between the primary source and an observation plane. For
definiteness, we consider an axially symmetric paraxial optical system that
includes a radially increasing optical amplitude loss with respect to the
optic axis. In particular, we consider a general paraxial system which
includes a Gaussian variation in amplitude transmission across the axis. It
has been shown that such systems cnln be described by a complex valued ABCD

ray matrix (1'2).

By using a Huygens-Fresnel integral formulation, whose propagation kernel is
a function of the system ABCD matrix elements, one can express the complex
optical field in the observation plane of an axially symmnetric system where

the input and output planes are in the same medium, as

tkt 2
Ucp) = |- m"] exp( -tkL)Jld ru(r)




x exp[— %% [Dpz- 2r-p + Arz]]. . )

where Kk is the optical wave number in free space, L is the optical distance
slong the z-axis, r and p are coordinate vectors transverse to the z-axis in
the scurce and observation plane, respectively, t° is the on-axis
transmission amplitude factor and A,B, and D are the overall complo'x ray
matrix elements for the system under consideration from the input to the

output plane. Without loss of generality we can assume that to- 1,

We now apply Eq. (1) to the special case where the source is incoherent and
obtain general expressions for the mean and second moment of the observed
Intensity. In any experimental measurement of the intensity one employs

(6)

detectors of finite size. Following Goodman » the instantaneous measursd

intensity is expressed as

1
I,"4 J'a‘p w(p) I(p), (2)

where = (p, py). I(p) = IU(e)Iz, W(p) is a real and positive measurement
aperture weighting function, and § = IW(e)dzp. Due to the presence of W(p)
the integration indicated in the above can be considered to be over the

entire observation plane.
From Egs. (1) and (2) the mean measured intensity can be expressed as

1
a2 = § [d'p wep) ey (3)




where

<I(p)p = |1 exp[k Irn(D/B)pz] szr I.(r_') exp [-2k Im(1/B)p'r]

B|?
x explk Irr_t( A/, 4)

where Im denotes the imaginary part, and the angular brackets indicate on
ensemble average over the statistics of the source. In obtaining Eq. (4) we
used the relation, valid for an incoherent source radlating into a
half-space, (k’/ZukU.(:l)U:(;z» - 1.“",*.{'2”2_"‘5,'52" where &(r) is the
two-dimensional Dirac delta function and I. lr‘ the radiated power per unit
area of the source. By considering the field of a point source located at &
point r in the input plane, it can be shown for a system with no gain and a
radially Increasing loss across the optic axis that both Im(A/B) and Im(D/B)
\ are lessfidXthan or equal to zero. As a result, the integrals in Eqs. (3) and

(4) are finite for any practical source distribution of interest.

In a similar manner, the mean square of the measured Intensity can be

expressed as
1
<I:> . ot Idsz Idzpz W(p,) W(p,XxI(p )I(p,)> (8)

Assuming circular complex Gaussian statistics for the underlying source

field, it can be shown that the intensity autocorrelation function can be

expressed as (6)

“I(g)ICe,)> = ‘“91”‘“22”[1 * |"(2;'Ez’|z] ()




where

| r‘B, 'Ez)l
[<1p,)><1(p,)>

|7(2;'8,)| = iz N
is the absulute magnitude of the complex degree of ccherence. The quantity I’
is the mutual coherence function of the field in the observation plane and is

given by
r(g.p,) = W(p) U (p,»

"
. | 2':':% l’ ¢xp[- ‘—‘2‘- (% :- _lj' p:]] J'dzrl.(;)

x exp [tk:- [gi - -E-;]] exp [xzmwmr’] (®

Equation 8 (s the generalization of the mutual coherence function for
propagation in a homogeneous medium, given by Eq. (20) of Ref. 7 chapter
10.4.2 , to complex ABCD optical systems. Thus, Eq. (8) can be regarded as a
generalization of the van Cittert-Zernike theorem to complex paraxial ABCD

optical systems,

Examination of Eq. (8) reveals that the statistics of intensity for a complex
ABCD system are not staticnary but rather depend on qbloluté' position B and
R, For a given circularly symmetric ABCD system contalning soft apertures
the mean irradiance and mutual coherence function is given by Egs. (4) and
(8), respectively. The corresponding measured mean and mean square intensity

are given by Egs. (3) and (5). Due to the assumption of an underlying

Gaussian statistics for the complex field all higher moments of the intensity




can be expressed by suitable products of the corresponding first and second

moments.

Another quantity of interest is the number of speckie correlation cells N

within the measurement aperture, Following Goodmun“) this quantity is given
by
<1u>'
N = varrry
2
<1 >
. M (9)

2 2
<IM> <IM>
Substituting Eqs. (3) and (5) into Eq. (9) yields

[ow(p) <I(p)>d®p)? o
N = 1
IJ'W(El)W(Ez)<I (p . )><I(ez)> | 7(el'ez)lzdzpldzpz

where <I(p)> and l?’(E,'Ez)l are given by Eqs. (4) and (7), respectively.

In order to proceed we specialize to the case where the intensity
distribution of the source is of gaussian shape given by I.(r) =
Ioexp( -2rz/r:). In addition we consider the situation where the bLeam spot
size in the observation plane s much smaller than the extent of the
measurement aperture; that is, we assume W = constant for I(p) » 0. Note, if
the measurement aperture is characterized by a Gaussian shaped weighting
function, it can be formally included directly in the ABCD matrix elements as
being the last optical element, Immediately In front of the observation

plane,

11




Unon performing the integration indicated in Eq. (8) it can be shown that the

mutual coherence function is given by

21 (p-p )? (p*+ p%) ‘
[} H 1 2 - 1 2 o
r(e,.e,) - _)czpz 9‘;- [ —_p’ ] exp [ __—u’ (11)

2
exp [t_ {% - Rc(D/B)} (5~ p:)]
p_|B
°

where
2
ot 8B, % Imcea") (12)
° kzrz
 §
and
2
W - pz |B] (13)

° 2
2Im(2D")Im(8A") = (1mp)*) + 4181 1m(pp")
kr
]

The corresponding expression for the beam intensity profile and the magnitude
of the degree of coherence are given by
2r

<I(p)> = ?—: exp [~ 2pz/uz] (14)
k'p

and

l7| = exp [- (g~ ez)z/p:] (15)




The quantity P, is a measure of the lateral extent of the region in the
observation plane where the opﬂcll field is correlated (and is hence a
measure of i.e mean speckle size) while the quantity w is a measure of the
beam intensity spot size. For a given ABCD system, these qQuantities can be

obtained directly from Egs. (12) and (13).

The number of speckle correlation celis within the beam, as obtained from Eg.
(10}, is given by

N=1+2 (16)

0wl

As an f{llustrative ABCD system we consider an optical system that images a
Gaussian shaped Inscherent source onto an observation plane. A positive thin
lens of Gaussian transmission radius o is located a distance l.l to the right
of the source. At a further distance Lz a Gaussian shaped aperture (l.e., a
measurement aperture) of radlus . is immediately to the left of the image
plane. The appropriate ray matrix elements can be calculated in a

straighforward manner with the result that

L, 2iL,
AB~ r - 3 (17&)
1 ke
2t LL
Bw- 12 (170)

ke




Substituting Eqs. (17) into Egs. (12) and (13) yields that

2 2
° k'o-’ kzr:'z
and
-1
| 1
W B (e P e
[ C‘z ”2 ]
3
where

(18)

(19)

(20)

is the spot size in the observation plane (l.e., image plane) for an Infinite

measurement aperture radius. Examination of Eq. (20) reveals that there are

two contributions to Wi the first term under is a geometric magnification cf

the source size and the second term represents the effects of diffraction

from the finite size of the imaging lens.

Equation (19) gives the effect of a finite measurement aperture on the image

size. As expected, for values of ¢ much larger (smaller) than w_ the

resulting image size {s given by v, (r.). On the other hand the coherence

length P, is independent of L it should.

The number of correlation cells contained in the imaged spot is obtained from

Eqs. (16), (18), and (19) as




2 (¢ /p )°
N =13+ ——— (21)
1 +¢( cr‘/w.) .
' and Is plotted in Fig. 1 as a function of o'./p° (i,e., the ratio of the
measurement aperture to the coherence length) for various values of e./w-.
For fixed L0 the number of correlation cells increase for decreasing values
of P, the corresponding increase being  progressively less for increasing

values of ¢ /w .
a ®

As a further lllustrlatlve example, \.ve consider a Fourier transform jcoxfmry
with a finite sized thin transform lens of positive focal length f and
gaussian radius ¢. As in the previous example a gaussian shaped measurement
aperture of radius e is assumed to be just in front of the Fourier plane. In

this case the relevant matrix elements are given by

As- Z_‘fz. (22a)
ke
Buf- 3’ ¢ (22b)
kcr
and
art 21t |1 1
D - e 2 - -z- +* —z (ZZC)
(kwr‘) k (3 e,

Substituting Eqs. (22) into Eqs. (12) and (13) yields that

p-_L[“[ ’] -

and wz. the sput size in the Fourier plane, is given by Eq. (19) where

15
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Figure 1. The number of intensity correlation cells for imaging and
Fourier transform ;eometrles contained in the measurement aperture
as function of the “aperture radius:” (normalized to the lateral coher-
ence length in the observation plane) for various values of Gg/Wee.
For the imaging and Fourier transform geometries, the quantities pg
and teo are given by Eqs. (18) and (19), and Eqs. (23) and (24),
respectively.
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/2
w = [r: + 0%+ (—‘-2-":) ] (24)

The number of correlation cells contained in the measurement aperture is
formally the same as Eq. (21), with P, and w_ given by Egs. (23) and (24),
respectively.

Finally, consider the case of an extended incoherent source (i.e., ro o). Of
particular intergst is the number of correlation cells N. For re> o N is
independent of the source and depends on the wavelength and properties of the
optical system only. Since the underlying probability density for the complex
field has been assumed Gaussian, N also gives the number of statistically
independent speckle modes. For roo e N can be interpreted as the maximum
number of independent intensity measurements that the optical system allows.
For an arbitrary complex ABCD system the méximum number of independent

intensity measurements allowable is given by

2
N =1+ = Bl = {25)
max Im(BA )Im(BD") - (ImB)?

Note, for a point source (i.e., r.o 0) the corresponding number of modes, as
expected, is equal to unity. For the imaging and Fourier transform geometries

N’mx is given by

Iw'o-.2 .
N =14+ 2d ’ (25)

where d = L2 and f for the imaging and Fourier transform geometry,

respectively.

17



3. Correlation Functions in Phase Shifting Interferometers

A basic characteristic of phase shifting interferometer operating in the
subtraction mode, being electronic or holographic, is the formation of
secondary fringes by taking the difference and squaring the two primary

(4)

interferograms, before and after loading Then the ensemble averaged

secondary fringe pattern is obtained as

Al -1) = <% + <> - 2<1 1>, (26)
a b a b ab

where, for notational convenience, we have suppressed the functional
dependence on observation plane coordinates g,. the subscripts b and a denote
before and after loading, and angular brackets denote the ensemble average
(i.e., over all possible realizations of the source distribution of scattered
light). Now each of the interferograms I‘ and Ib, found from two primary wave

where I = |U
1

» 12|2. Assuming that U1 and U2 are stochastically independent

and that the inténsity of a speckle pattern obeys negative exponential
statistics, M. Owner-Petersen has calculated the secondary fringe pattern and
corresponding visibility V of the correlation fringes for the cases where U1
is speckled and I'_Jz may be speckled. The situation where U1 and U2 are
speckled and decorrelate under load is relevant both to the in-plane
displacement sensitive interferometer and to the out-of-plane gradient
interferometer, where both the primary wavefronts U1 and U2 are scattered
from the surface under test. The situation when only U1 decorrelates under
load is relevant to the c.t-of-plane displacement sensitive interferometer,

where U2 represents a deterministic reference wave. Central to the quality of

19
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the secondary fringes in the various interferometers is the correlation
coefficient of the complex fields in the observation plane before and after

loading. This quantity is defined as

o
<U~U.>

- (28)
v<u | veju |® .
. b

7

where [t Is wussumed that both U‘ and Uz have the same correlation

funetionm

. In general 7 is complex with Os|y|sl. Thus the effects of
decorrelation are a distortion and corresponding reduction of fringe
visibility In the observation plane (e.g.,, V + o as |7|+ o). Owner-Petersen
derives an explicit expression for the decorrelation coofﬂclont. in a direct
image-collecting optical system. However, as indicated in the appendix, the
results given in Ref. S apply, strictly speaking, to. the case where the

number of modes collected by the lmaging system are very large.

Specifically, 7 is the cross-correlation function of the complex optical
field before and after loading observed at a point in the observation plane,
l.e., in practice at one resolution or pixel selement In a detector array.
Here we compute 7 for three types of defox;mntlon. which for sufficiently
small loadings will be {ndependent: (1) tilt about an in-plane axis, (2)
in-plane translations, and (3) a translation parallel to the optic axis. Here
we assume an object is {lluminated by a lassr beam of mn'.n wavevector k‘ The
scattered light of wavevector k. uloﬁg the optic axis propagates through a
complex ABCD and the irradiance is recorded by a suitable detector array In
the observation plane. It is assumed that the object is sufficlently rough
such that the reflected light can be assumed to be spatially completely
incoherent in the objsct plane. Specifically, we consider that the reflected

light {s given by u(r) = p(r) exp lt(_lgl- 5‘ )+ t], where p(r) is the (complex)

20




reflection coefficient of the object. For an incoherent object radiating into
a half space we have that <p(r_llp'(£z)> = (2n/%%) B(EI-rzil.[(£1+_l:z)/2].
where k is the magnitude of the wavenumber, I. Is proportional Ito the
brightness distribution of the source and is assumed here to be of the form

oxp[-Zrz/r:l. where r, is the source spot radius.
2.1 In-Plane TIit
In this situation, the reflected optical field o.!'te'r loading in an object
plane transverse to the y-axis is given by (assuming small tilt angles 8)

U.(_r;) - oxp[lksar]Ub(;_). (29
where Ub(x:) is the reflected field before loading,

B = (1 + cosa), (30)

and o is the angle between kz and the B-axis (i.e., the angle of incidence of

the illumination beam).

The correlation function is obtained by employing Eq. (29) in Eq. (1) and
substituting the resulting expressions into Eq. (28). The ensemble average is
readilly obtained by noting that <Ub(£l)ub.(£2)> " (Zu/kzll.ltg_l*gz)lzl

8(r,-r,).

Assuming a Gaussian shaped source spot size, the resulting Gaussian integral
can be integrated analytically. After a straight forward calculation, it can

be shown that (assuming a tilt about the y-axis)

= |7|e i, (31)

21




where

7| = expl- 6%/0), (32)
P
0‘ - _"'-'.""'o . (33)
2|B|8
4alm(B)p“e
Qt .- 2 (34)
P

9

p: is given by ‘Eq. (12), B Is the B-matrix element of the optical system

before loading, and P, is the projection of the observation coordinate vector
ento the x-axis. Equations (31)-(34) give the load induced éb,loot tilt
correlation coefficient for a complex ABCD optical system applicable to
phase-shifting speckle Interferometry. Note, for a point source (l.e., r g o,

P ) we obtain, as expected intuitively, that y » 1.
2.2.In-Plane Translation

In this situation the load induces a uniform displacement of the object by an
amount Ar_o perpendicular to the fS-axis. Thus, the reflected object field

after loading can be expressed as

Up) = U (r-ar) (3s)

By following the same procedure used in sec 3.1, it can be shown that the

in-plane translation induced correlation coefficisnt is given by

7= |v|e"oxp[l(575°) + Ar), (36)

22




where

2
l7| = Oxp[- lar) } 37)

(-]
G-clArzd-czg-_A_r " (39)

o YRe(BA®)

c
2 2
kr.p°

. (40)

and

(:z u k Re(l/B) - 4Im(1/B)Re(BA®)

ot

(41)

Equation (3%5)=(41) gives the correlation coefficlient for .load induced
in-plane translztion for complex ABCD systems. For a point source (rz-r 0) on
the optic axis we obtain that [y| = 1, ¢, = k Re(A/B)/2, and ¢, = k Re(l/B),
which {s identical to what one would obtain from Eq. (1) directly. As
expected physically, the correlation coefficient for a point source is a pure

phasor.

.3 Iranslations parallel to the optic axas

When the load induces a translation along the z-axis by an amount Az, the
field after loading can be cobtained from the corresponding fleld before

loading by replacing the ABCD matrix elements by A B, € and B, where
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That s, U. is given by Eq. (1) with the matrix elements (A 8 & D), where A=

o >t
Ot o

A BuBeatz, CmC, and D = D + Caz.

Similarily, by following the same procedure outlined in sec 3.1, it can be
shown that the correlation coefficient for translations along the optic axis

i{s glven by
7 = & exp li(ksk ) bz] explikiRe(D/B) = Re(D/B)p’/2) expl-c, p'ntl  e2)

where w, the spot size In the observation plane before leading, is given by

Eq. (13),

PP

am —3:2—“. (43)
e,
3
;2 - pz + 282 4AB* - i lé_‘ , (44)
¢ (kr')' K

Pou is given by Eq. 12, Py is obtalned from Eq. (12) by replacing A and B by

A and B, respectively, and c_ Is a (complex) constant with le,] 1, and

Re(ca) ® 0. Although a rather lengthy expression for c, s 2 function of Az

and A,.. D can be written down it {s of no great concern here. This can be

seen by recognizing that, in practice, meaningful information from the
secondary fringe are obtained in the regime of the observation plane where
the recorded intensity is relatively high (l.e., for p < w).. Restricting our

attention tc values of p near the centsr of the spot (l.e., near p = 0), the
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magnitude cf the correlation coefficient for displacements parallel to the
optic axis is equal to the miplitude coefficient a, given by Eq. (43). For a

pointsource, a - 1, the correlation coefficient is a pure phasor.

2.4 Apolications

We now apply the results of secs 3.1-3.3 to three optical systems of concern
to phase difference specklie interferometry and obtain analytic expressfon for
the magnitude of the correlation coefficlent |7|. This quantity ralates

directly to fringe visibility see Egs. (15) and (17) of Ref. 5).

As Indicated schematically in Fig. 2, the clean imaging optical system
consists of a larga positive thin lens of focal length f: pluced a distance
1‘l to the right of a Gaussian shaped source of radius r At a distance f: to
the right of thie lens is a Gaussian shaped limiting aperture of radius ¢. At
a further distance f‘z te the right of this aperture is a large positive thin
lens of focal length fz. Finally, the observation plane is located a further
distance f2 to the right of this lens. An imaging system of this type s
convenient since by varying the limiting aperture radius o, one can match the
target resolution to enllure a fully resolved speckle pattern across the
detector array. Furthermore, since the limiting aperture is placed in the
Fourier plane the «clean Iimaging system is relatively Insensitive to
vignetting effects, and quadratic phase factors, present in direct imaging
systems, are absent here leading to mathematical simplifications of the

complex fleld in the observation plane.
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The appropriate ray matrix elements are given by: A = lefx' B = Zifllelwz,

and D = n/fz' The mean speckle size P, and magnitude of the spot size w are

Bl

W= [ ]N"’ (46)

given by

where N, the number of modes "captured” by the system, takes the form

ke r )2
NII*T.- (47)

1

Next consider a direct imaging system where a positive lens of focal length f
and Gaussian radius ¢ s located a distance L‘ to the right of a source of
radius ry At a further distance Lz‘ to the right of the lens (where l..;l; L;'
) t‘") i{s the observation plane. The appropriate ABCD matrix elements are
given by Eqs. (17) for oo e It is easily seen that the quantities Py &

and N are identical to those obtained above for the "clean" imaging system

with fm-) Ll.:

Finally, we consider a Fourier transform optical system. Such a system may be

of interest to measurement of surface rotation anc :iltm. Tizlan{ shows
that under these conditions the rigid body tilt is measured independently of

any lateral displacement. The appropriate ray matrix elements are given by

Eqgs. (22) and we readily obtain from Eqs. (23) and (24) that




atl[2n |M?],  (ke?/21)?
P, = Tr] N—-l] [1 *t N (48)
and

2
™ [%-:,—] N+ c'z. (49)
where the number of modes N is given by Eq. (47).

In Table 1 we present the 'corrolpondlng results for the correlation
coefficients. For single mode systems (le., N = 1, P> ») the correlation
coefficlent is unity and fringe visidility will be unaffected by load induced
deformations. On the other hand, for direct imaging, and N >> 1, the results
presented In Table | for both the in-plane tilt and displacement agree
qualitatively with the results of Ref. 5 for the case where the imaging lens

is in the limit of Fresnel diffraction (i.e., L1 << ka-z).

To illustrate the effects on decorrelation due to finite N we consider clean
imaging and plot the |y| as a function of both @ and Ar, normalized to the
respective decorrelation parameter for N 4 «. Since both Ot and r p depend on
N in an identical manner we obtain a single family ‘of curves, which are
plotted iIn Fig. 3. Examination of Fig. 3 indicates that for N=l0O, one may

employ the decorrelation lengths for both tilt and in-plane displacoment

obtained for N - w with negligible error.

For local induced deformations along the optic axis, we see from Table { that
|7| decorrelates with the characteristic length z_ (where z is of the order
the depth of field) for the clean and direct imaging (for Lx« ke?) and with

the fresnel length ke? for the Fourier transform system,
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0.0 0.5 1.0 1.5 2.0 2.5
x (Normalized Deformation)

Figure 3. The magnitude of the correlation coefficient for imaging
systems as . function of normalized deformations for various values
of N. For in-plane tilt and in-plane displacement x = 6/6¢e and
Ar/tdes, respectively, where 0t.. and rg. are the respective decorre-
lation parameters ip Table 1 for N = -o(e.?., for the clean imaging
3yStem Btee wG/+/2 f1B and rdeo = 242 f1/k0).
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In contrast to tilt in-plane displacement, |7| decorrelates much slower as a
function of Az and N. These features are illustrated in Fig. 4 where |7]| is
plotted as a function of Az/z° and various values of N. In particular, for
N=w», one obtains a finite residual correlation tail equal to 2NV2/(N+1).
These featgres are lllustrated in Fig. 4 where |7| for a clean imaging system
is plotted as a function of d2/z, where z = 4ff/k¢rz is the depth of fleld
of the objective lens and various values of the number of modes. For finite
N, decorrelation effects become important when Az > z, As an example
consider wavelengths in the visible or near ir and Az ~ O.1 mm. Hence, If
f:/' ® 10 load induced ' deformations along the optic' axis are manifest in
phase difference Interferometry, S\xch" 2 s'ltuatlon may be obtained, for

example, In a system that employs a microscope.

For the Fourler transform system the characteristic decorrelation length is
given by kaz. the Rayleigh range of the Fourier transform lens. For practical
applications ket is generally much greater than all load deformations Az of
interest and hence we conclude that Fourler transform systems will be
insensitive to displacements along the optic ax!s in phase difference

interferometry applications.
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0.0

0.5 1.0 1.5 2.0
Azfz,

Figure 4. The magnitude of the correlation coefficient for a ““clean”
imaging system as a function of Az/zq for various v?lues ?f N, where
sz t{slt(l;e deformation along the z-axis and zg = 4f,' / ko is the depth
of field.
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Appendix

Here we demonstrate that the results of Ref. S for the correlation function
of the field are valid for N >> 1, where N is the number of modes.
Owner-Petersen considers a direct lmu;-collectinl geometry where a lens of
diameter D collects light reflected of an object of amplitude reflection
coefficient p(r). Central tc the derivation of the correlation function in
Ref. S5 is the quantity A A which s obtained in the calculation of the
wavefront in the pupil plane. 'n'm quantity is the Fourier transform of p and

in the notation employed here [s given by

Aglg) = Idzr pir) e ! 'L, (A-1)
where

q= .—EB, (A-2)

L is the distance between the object and the lens, and -':-p is a

two-dimensional coordinate vector in the pupil plane (5). In computing the

correlation function Owner-Petersen asserts, in Eq. AlO of Ref, 5 that A s

[
delta correlated:
[ ]
<A p(ﬂx) A p(Sz» = constant 6(31- Sz) (A=3)
To see under what condition this is valid we have from Eq. A-) that
[ ] . - .
<A (g) A(g,)> = Idzrljdzrz <pir,) p*(r.)> A R ;z) (A-4)

For a completely incoherent source the phase of p is random with statistics

<p(£l)p'(_§z)> = constant a(gl-gz). Using this into Eq. (A-4) yields

<A,lg,) A2 (g,)> = constant Idzr|p(£)|2 Nl R (A-5)
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Now In order that the right hand side of Eq. A-S5 resemble a delta function it
is necessary for the exponential term in the integral to undergo many

osclllations for q= q, This condition will be satisfied If |p| s slowly

2
varying and

: kDr
) (A-6)
|(Sl- Sz).zlmu ~ T- » 1'
where r, is of the order the size of the object. Comparing Eg. A-6 with

Eq. 47 Indicates that Eq. A-6 is equivalent to the condition that the number

of modes N > ),

Indeed, Eq. A-6 can be obtalned by an elementary u-gumolnt. Physically, one
can consider the optical fleld in the pupil plane to be delta correlated when
the lateral coherence length of the fisld is much less than the pupil
diameter D. By the van-Clttert Zernike theorem, the coherence length of an
inccherent radiater of size T is of the order Arl/L. where A s the optical
wavelength. The condition that this coherence length Is much less than D s

identical to Eq. A-6. For many application Eq. A-6 is not satisfied and the

assumption that A o is delta correlated is not valid.




Referenc ¢

2.

A.E. Siegmun, “Lasers", University Scicncs Books, Mill Valley CA., 1986,

H.T. Yura and S.G. Hunson, "Optical Beam Wave Propagsation through
Complex Optical Systems", J. Opt. Soc. Am. A, 4, 1931-1948 (1987).

H.T. Yura and S.G. Hansen, "Second-Order Statistics for Wave Propagation
Through Complex Optical Systems", J. Opt. Soc. Am. A, 4, 564-575 (1989).

K. Creath, ‘"Phaseshifting Speckle Interferometry", in ln’iernutloml
Conference on Speckle, H.H. Arsenault, ed., Proc. Soc. Photo=-Opt.

Instrum. Eng. 556, 337-346 (1985).
M. Owner-Petersen, "Decorrelation and Fringe Visibllity:' on the Limiting
Behaviour of Various Electronic Speckle-Pattern Correlation

Interferometers”, Jr. Opt. Soc. Am. A, 8§, 1082-1089 (1991).

J.W. Goodman, "Laser Speckie and Related Phenomenon”, Vol. 9 of Topicsin

Applied Physics, Springer-Verlag, Berlin, 1975.

M. Born and E. Wolf, "Principles of Optics", Pergamon Press, Oxford,
1978.

H. Tizianl: Opt. Commun. 8, 271 (1972).

35




TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer” for national security
programs, specializing in advanced military space systems. The Corporation's Technology
Operations supports the effective and timely development and operation of national security
systems through scientfic research and the application of advanced techrology. Vital to ihe
success of the Corporation is the technical staff's wide-ranging expertise and its ability to stay
abreast of new technological developments and program support issues associated with rapidly
Evolvlng space systems. Contributing capabilities are provided by these individual Technology

enters:

Electronics Technology Center: Microelectronics, solid-state device physics,
VLSI reliability, compound semiconductors, radiation bhardening, data storage
technologies, infrared detector devices and testing; electro-optics, quantum electronics,
solid-state lasers, optical propagation and communications; cw and pulsed chemical
laser development, optical resonators, beam control, atmospheric propagation, and
laser effects and countermeasures; atomic frequency standards, applied laser
spectroscopy, laser chemistry, laser optoelectronics, phase conjugation and coherent
imaging, solar cell physics, battery electrochemistry, battery testing and evaluation,

Mechanics and Materlals Technology Center: Evaluation and characterization of
new materials: metals, alioys, ceramics, polymers and their composites, and new
forms of carbon; development and analysis of thin films and deposition techniques;
nondestructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; development and evaluation of hardened components;
analysis and evaluation of materials at cryogenic and elevated temperatures; launch
vehicle and reentry fluid mechanics, heat transfer and flight dynamics; chemical and
electric propulsion; spacecraft structural mechanics, spacecraft survivability and
vulnerability assessment; contamination, thermal and structural control; high
temperature thermomechanics, gas kinetics and radiation; lubrication and surface
phenomena.

Space and Environment Technology Center: Magnetospheric, auroral and
cosmic my physics, wave-particle interactions, magnetospheric plasma waves;
atmospheric and ionospheric physics, density and composition of the upper
atmosphere, remote sensing using atmospheric radiation; solar physics, infrared
astronomy, infrared signature analysis; effects of solar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere; effects
of electromagnetic and particulate radiations on space systems; space instrumentation;
propellant chemistry, chemical dynamics, environmental chemistry, trace detection;
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific
chemical reactions and radiative signatures of missile plumes, and sensor out-of-field-
of-view rejection.




